

COSMOLOGY RESULTS FROM THE SDSS-II SUPERNOVA SURVEY

R.KESSLER
JAN 5, 2009
AAS 213
LONG BEACH, CA

THE SDSS-II SN SURVEY

- 300 DEG² ROLLING SEARCH FOR SNE IN THE FALL SEASONS OF 2005-2007 (9 MONTHS TOTAL ON SDSS 2.5M)
- SPECTROSCOPIC CONFIRMATION FOR
 ~500 SN IA (USING ~DOZEN TELESCOPES)
- HOST-GALAXY REDSHIFTS FOR ~300
 PHOTOMETRICALLY ID'ED SNE IA
- 1700 PHOTOMETRIC SN IA REMAIN;
 HOST-REDSHIFTS STILL IN PROGRESS
 (SPEC-PROPOSAL SUBMITTED TO SDSS-III)
- THIS TALK: COSMOLOGY RESULTS USING
 103 SNE (AFTER CUTS) FROM FIRST SEASON
 (FALL 2005).

REDSHIFT DISTRIBUTION

(SDSS SNE FILL REDSHIFT GAP: 0.05-0.4)

SDSS gri LIGHT CURVES: <N_{MEASURE} > = 48 PER SN

COMBINE SDSS SNE WITH PUBLISHED SAMPLES

ANALYSIS WITH AVAILABLE LIGHT CURVE FITTERS:

- MLCS (JHA,RIESS,KIRSHNER 2007): SAME METHOD, BUT RE-WRITTEN WITH SIGNIFICANT IMPROVEMENTS TO IMPLEMENTATION
- SALT2 (GUY ET AL.,2007):
 USE CODE AS-IS, BUT RETRAINED
 SPECTRAL SURFACES WITH OUR
 UBVRI FILTER SHIFTS
 (INSTEAD OF THOSE IN ASTIER 2006)

MEASUREMENT OF DUST PROPERTIES WITH SDSS-II

PROBLEM: SPEC-CONFIRMED SN IA SAMPLE HAS LARGE (SPECTROSCOPIC) INEFFICIENCY THAT IS NOT MODELED BY THE SIMULATION.

MLCS framework

CONFIRMED SNE ON
AVERAGE ARE
BLUER and BRIGHTER

THAN PARENT
POPULATION →
BIASED DUST
PROPERTIES
(R_V, A_V PROFILE)

MEASUREMENT OF DUST PROPERTIES WITH SDSS-II

PROBLEM: SPEC-CONFIRMED SN IA SAMPLE HAS LARGE (SPECTROSCOPIC) INEFFICIENCY THAT IS NOT MODELED BY THE SIMULATION.

SOLUTION: INCLUDE PHOTOMETRIC SNE IA WITH HOST-GALAXY REDSHIFT: 155 WITH Z < 0.3

DUST PROPERTIES WITH SDSS-II

 $R_V = 2.2 \pm 0.5 R_V = 3.1$ **MATCHES OBSERVED** COLORS

IN SIMULATION IN SIMULATION **POOR MATCH**

DUST PROPERTIES WITH SDSS-II

 $R_V = 2.2 \pm 0.5 R_V = 3.1$ **MATCHES OBSERVED** COLORS

IN SIMULATION IN SIMULATION **POOR MATCH**

EXPONENTIAL Av PROFILE IN SIM MATCHES FIT-AV PROFILE IN DATA

AV WITH FLAT PRIOR

A_V > 0 GENERATED IN SIMULATION

SCRII

DESCRIBES
FITTED A_V < 0
WITH NO PRIOR

CONSISTENT WITH MLCS INTERP
OF TOO-BLUE SNE

IMPACT OF MLCS CHANGES (δw ~ 0.3 compared to WV07)

PREVIOUS
MLCS -- BASED
ANALYSIS FROM
ESSENCE
COLLABORATION

IMPACT OF MLCS CHANGES $(\delta w \sim 0.3 \text{ compared to WV07})$

- 1. Measured $R_V = 2.2(5)$ (instead of assuming 3.1)
- 2. Measured A_V profile (instead of assuming glos)

3. Include spectroscopic efficiency in prior (instead of ignoring it)

COSMOLOGY FIT

- PRIORS: BAO, CMB, FLAT UNIVERSE
- FLOAT w AND $\Omega_{\mathbf{M}}$

68% + 95% STAT-ERROR CONTOURS (MLCS)

Preliminary MLCS

Results:

- total error
- -- stat error

SALT-II

Preliminary MLCS

Results:

— total error

-- stat error

ILCS SALT-II

LARGE U-BAND SYSTEMATIC FOR SDSS SNE

significance of shift: 6σ

LARGE U-BAND SYSTEMATIC FOR SDSS SNE

SALT2-MLCS DISCREPANCY WITH/WITHOUT REST-FRAME UV

	w_{SALT2} – a	w_{MLCS} FOR:
	INCLUDE	EXCLUDE
SN SAMPLE(S)	REST-UV	REST-UV
SDSS-ONLY		0.25
	0.04	44 .
ALL 5 SAMPLES	0.2	
(288 SNE)		0.1

UV-REGION

- EVIDENCE POINTS TO PROBLEM WITH REST-FRAME UV IN NEARBY (Z < 0.1) SAMPLE.
- MLCS IS MORE SENSITIVE (THAN SALT-II)
 TO NEARBY UV BECAUSE ONLY NEARBY
 SNE ARE USED FOR TRAINING.
- SDSS SN SAMPLE IDEALLY SUITED TO STUDY REST-FRAME UV REGION:
 - ☆ FEW DOZEN SNE WITH → (z < 0.1)
 </p>
 - 200 SNE WITH \rightarrow (z > 0.2)
 - WITH HOST-GALAXY REDSHIFTS, PERHAPS DOUBLE OR TRIPLE!

MLCS-SALT2 DISCREPANCY (WITH HIGH-Z SAMPLES)

FOR REALLY

SALT2 SAYS THEY ARE
BRIGHTER ⇒ LARGER µ

MLCS PRIOR SAYS CAN'T BE BRIGHTER THAN TEMPLATE WITH AV=0

SALT-II REDSHIFT DEPENDENCE

FIT IN SEPARATE REDSHIFT BINS WITH COSMOLOGY (W,Ω_M) FIXED TO VALUES FROM GLOBAL FIT.

- all five samples (e)
- all except HST (d)

SUMMARY

- COSMOLOGY ANALYSIS OF 1ST SEASON SDSS SNE IA COMPLETE; PAPER UNDER INTERNAL REVIEW.
- "IMPROVED" MLCS AND "STANDARD"
 SALT-II GIVE DISCREPANT RESULTS FOR w:
 (UV REGION AND TOO-BLUE SNE)
- UV PROBLEM VERY CLEAR WITH SDSS
 SNE; DOMINATES SYSTEMATIC ERRORS.
- STILL WORKING TO OBTAIN A TRULY "COMPLETE" SDSS SN SAMPLE THAT INCLUDES PHOTOMETRIC SNE WITH HOST-REDSHIFTS.

SDSS SN PAPERS

PUBLISHED

- OVERVIEW: Frieman et al, AJ, 135, 338 (2008)
- **SURVEY:** Sako et al., AJ, 135, 348 (2008)
- SPECTROSCOPY: Zheng et al., AJ 135, 1766 (2008)
- SN PHOTOMETRY: Holtzman et al., AJ 136, 2306 (2008)
- Lowz SN RATE: Dilday et al., ApJ 682, 262 (2008)

PAPERS TO BE SUBMITTED IN JAN 2009

- HUBBLE DIAGRAM & COSMOLOGY: K09
- EXOTIC COSMOLOGY MODELS: Sollerman et al.
- Low-Z (z<.4) COSMOLOGY: Lampeitl et al.,